Synthesis of Cluster Compounds via Nucleophilic Metal Complexes; X-Ray Crystal Structures of $\left[\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{P}\right\}\right]$ and $\left[\mathrm{Os}_{2} \mathrm{Pt}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$

By Louis J. Farrugia, Judith A. K. Howard, Pachanee Mitrprachachon, John L. Spencer, F. Gordon A. Stone,* and Peter Woodward

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary The dihydrido complex $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ reacts with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{R}_{3} \mathrm{P}\right)\right],\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$, $\left[\mathrm{AuMe}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$, and $\left[\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ to afford, respectively, $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Pt}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mathrm{R}_{3} \mathrm{P}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}\right.$ or Ph$), \quad\left[\mathrm{H}_{2} \mathrm{NiOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$, $\left[\mathrm{HAuOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$, and $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{10}\right]$, while $\left[\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$ yield $\left[\mathrm{H}_{2} \mathrm{Os}_{2} \mathrm{Pt}_{2}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right] ; X$-ray diffraction studies have established the structures of the osmium-platinum compounds.

Electron-rich d^{10} metal complexes undergo oxidative insertion reactions with electron deficient carbaboranes. ${ }^{1}$ Several closo- and nido-platinacarbaboranes have been obtained in this manner via formal addition of an electronpair metal-centre to the cage structures. ${ }^{2}$ This approach to the synthesis of cluster ${ }^{3}$ compounds might be applicable to the preparation of heteronuclear transition metal complexes by judicious combination of electron-deficient and electronrich species. Herein we describe reactions of the electronically unsaturated dihydride $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]^{4}$ with d^{8} and d^{10} complexes.

Pentane solutions of $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ react at room temperature with the complexes $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{R}_{3} \mathrm{P}\right)\right]$ ($\mathrm{R}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{11}$) to afford ($60-80 \%$) dark green crystalline compounds $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Pt}(\mathrm{CO})_{10}\left(\mathrm{R}_{3} \mathrm{P}\right)\right]\left[1, \mathrm{R}=\mathrm{Ph}, \mathrm{m} . \mathrm{p} .140-145^{\circ} \mathrm{C}\right.$ (decomp.), v_{co} (cyclohexane) $2079 \mathrm{~m}, 2053 \mathrm{sh}, 2045 \mathrm{~s}$, $2029 \mathrm{vw}, 2019 \mathrm{~s}, 1989 \mathrm{~s}, 1975 \mathrm{~m}, 1963 \mathrm{w}$, and $1947 \mathrm{w} \mathrm{cm}^{-1}$;

2, $\mathrm{R}=$ cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, \quad$ m.p. $\quad 176-178{ }^{\circ} \mathrm{C}$ (decomp.), $\nu_{\mathrm{CO}^{-}}$ (cyclohexane) $2075 \mathrm{~m}, 2043 \mathrm{~s}, 2017 \mathrm{~s}, 1985 \mathrm{~m}, 1973 \mathrm{~m}$, $1959 \mathrm{w}, 1943 \mathrm{~m}$, and $1913 \mathrm{vw} \mathrm{cm}^{-1}$]. Examination of the ${ }^{1} \mathrm{H}$ n.m.r. spectra revealed that the complexes undergo dynamic behaviour in solution. Thus the ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (1) at room temperature showed a broad hydride signal at ca. $\tau 17$ which at $-60^{\circ} \mathrm{C}$ changed to two sharp resonances at $\boldsymbol{\tau} 16 \cdot 16\left[\mathrm{~s},{ }^{2} J(\mathrm{PtH}) 8 \mathrm{~Hz}\right]$ and $17.52\left[\mathrm{~d},{ }^{2} J(\mathrm{PH}) 16,{ }^{1} J(\mathrm{PtH})\right.$ 590 Hz]. In order to establish the molecular structure of the complexes $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Pt}(\mathrm{CO})_{10}\left(\mathrm{R}_{3} \mathrm{P}\right)\right]$ a single crystal X-ray diffraction study was carried out on compound (2). \dagger
Crystal data: $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{PPt}, M$ 1328.2, monoclinic, space group $P 2_{1} / c, a=11.822(4), \quad b=16 \cdot 584(5), \quad c=$ $17 \cdot 763(9) \AA, \beta=108 \cdot 10(4)^{\circ}, U=3310(3) \AA^{3}, Z=4, D_{\mathrm{m}}$ $=2.55, \quad D_{\mathrm{c}}=2.67 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=2416, \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $166.6 \mathrm{~cm}^{-1}$. Current $R 0.046\left(\mathrm{R}^{\prime} 0.048\right)$ for 6586 absorption corrected intensities $\left[200 \mathrm{~K}, 2 \theta \leqslant 60^{\circ}, I \geqslant 2 \sigma(I)\right.$, Syntex $P 2_{1}$ diffractometer, Mo- $\left.K_{\alpha}(\lambda=0.71069 \AA)\right]$.

The molecular structure (Figure 1) shows that the osmium atoms form an essentially isosceles triangle to which the platinum atom is asymmetrically bonded $[\mathrm{Pt}-\mathrm{Os}(1)$, $2.863(2)$; $\mathrm{Pt}-\mathrm{Os}(2), 2 \cdot 791(2)$; and $\mathrm{Pt}-\mathrm{Os}(3), 2 \cdot 832(2) \AA]$. The X-ray study also reveals that a carbonyl ligand has migrated onto the platinum atom, which also carries the tricyclohexyl phosphine group. Evidence for the presence of bridging hydrogen atoms between $\mathrm{Os}(1)-\mathrm{Pt}$ and between

[^0]

Figure 1. Molecular structure of [$\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right.$ $\mathrm{P}\}]$; $\mathrm{Pt}-\mathrm{Os}$ distances are given in the text, $\mathrm{Os}(1)-\mathrm{Os}(2), 2 \cdot 778(2)$; $\mathrm{Os}(2)-\mathrm{Os}(3), 2 \cdot 789(2) ; \mathrm{Os}(1)-\mathrm{Os}(3), 2 \cdot 741(2)$; and $\mathrm{Pt}-\mathrm{P}, 2 \cdot 373(4) \AA$
$\mathrm{Os}(2)-\mathrm{Os}(3)$, the two longest edges of their type, is given in the electron-density difference maps. The usual associated widening of the equatorial $\mathrm{Os}-\mathrm{Os}-\mathrm{CO}$ angles is also observed $\left[\angle \mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(31), 110^{\circ} ; \angle \mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22), 112^{\circ}\right.$; the other $c i s \mathrm{Os}-\mathrm{Os}-\mathrm{C}$ angles range from 81 to 105°]. A resonance in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (2) at $\boldsymbol{\tau} \mathbf{1 6 . 9}$ is assigned to the $[\mathrm{Os}(\mu-H) \mathrm{Os}]$ bridge. The other high field signal at $\tau 18 \cdot 4[J(\mathrm{PtH}) 583 \mathrm{~Hz}]$ is ascribed to $[\mathrm{Os}(\mu-H) \mathrm{Pt}]$.

The complexes (1) and (2) are ' 58 -electron' clusters and as such are formally unsaturated. ${ }^{3}$ Accordingly, compound (1) reacts with $\mathrm{CO}, \mathrm{Ph}_{3} \mathrm{P}$, or Ph_{3} As to afford quantitatively the ' 60 -electron' species $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Pt}(\mathrm{CO})_{10}\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{L}\right]$ $\left[\mathrm{L}=\mathrm{CO}(3), \mathrm{Ph}_{3} \mathrm{P}(4)\right.$, and $\left.\mathrm{Ph}_{3} \mathrm{As}(5)\right]$. Acetylene also readily reacts with (1). The entering ligands L in (3)-(5) are bonded to either $\mathrm{Os}(2)$ or $\mathrm{Os}(3)$. Thus the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ decoupled, room temperature, CDCl_{3} solution) n.m.r. spectrum of (4) showed two singlet resonances at 7.33 and -30.76 p.p.m. [rel. to $\mathrm{H}_{3} \mathrm{PO}_{4}$ (external)] with only the latter having platinum satellites $[J(\mathrm{PPt}) \quad 2501 \mathrm{~Hz}] . \ddagger$ Partial decoupling experiments revealed that each phosphorus nucleus was coupled with only one hydrido ligand, and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3},-60{ }^{\circ} \mathrm{C}\right)$ showed two doublets at $\tau 18.55[J(\mathrm{PH}) 20 ; J(\mathrm{PtH}) 590 \mathrm{~Hz}]$ and 27.55 [$J(\mathrm{PH}) 15 \mathrm{~Hz}$.
The unsaturated complex $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ also reacts with the compounds $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$, $\left[\mathrm{AuMe}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$, and
$\left[\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ to afford, respectively, $\left[\mathrm{H}_{2} \mathrm{NiOs}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$ (6), $\left[\mathrm{HAuOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$ (7), and $\left[\mathrm{H}_{2} \mathrm{Os}_{3} \mathrm{Rh}-\right.$ (acac)(CO) ${ }_{10}$] (8).

The orange complex (6) is not isostructural with (4) since the i.r. spectrum shows bridging (1855 m and $1821 \mathrm{~m} \mathrm{~cm}^{-1}$) as well as terminal ($2073 \mathrm{~s}, 2065 \mathrm{~m}, 2037 \mathrm{vs}, 2015 \mathrm{~s}, 1999 \mathrm{~s}$, 1985 m sh, 1973 m , and $1959 \mathrm{w} \mathrm{sh} \mathrm{cm}^{-1}$) carbonyl stretching bands. The ${ }^{31} \mathrm{P}$ (${ }^{1} \mathrm{H}$ decoupled, CDCl_{3}) n.m.r. spectrum established that one $\mathrm{Pl}_{3} \mathrm{P}$ ligand is attached to nickel and the other to osmium $\{-63 \cdot 6[\mathrm{~d}, \mathrm{Ni} P, J(\mathrm{PP}) 6 \mathrm{~Hz}]$ and -2.6 p.p.m. [d, Os $P, J(\mathrm{PP}) 6 \mathrm{~Hz}]\}$. The ${ }^{1} \mathrm{H}$ spectrum showed two high field signals $[\tau 23.63, J(\mathrm{PH}) 16 \mathrm{~Hz}$; $30 \cdot 20, J(\mathrm{PH}) 11 \mathrm{~Hz}]$. The exchange of $\mathrm{Ph}_{3} \mathrm{P}$ for CO between the two metals also occurs in the formation of (4) from the related reaction of $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$.

The green gold-osmium complex (7), m.p. 168- $173^{\circ} \mathrm{C}$ (decomp.) [${ }^{1} \mathrm{H}$ n.m.r.: $\boldsymbol{\tau}$ 22•1, $\{\mathrm{Os}(\mu-H) \mathrm{Os}\}$], isoelectronic with (1), is evidently formed via elimination of methane. The black crystalline rhodium-osmium cluster (8), m.p $130-134{ }^{\circ} \mathrm{C}$ (decomp.) has a ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left[\mathrm{CDCl}_{3}\right.$, room temperature, $\tau 4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.96(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$, $20 \cdot 10(\mathrm{~s}, 1 \mathrm{H})$, and $25 \cdot 55(\mathrm{~s}, 1 \mathrm{H})$] in which the two highfield signals sharpen on cooling to $-50^{\circ} \mathrm{C}$, indicating dynamic behaviour in solution, but the absence of ${ }^{103} \mathrm{Rh}-{ }^{1} \mathrm{H}$ coupling implies that rhodium-hydride bonding does not occur.

Reaction of the complexes $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{R}_{3} \mathrm{P}\right)\right]$ ($\mathrm{R}=\mathrm{Me}$, $\left.\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{Ph}\right)$ with the mono-nuclear dihydride $\left[\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}\right]$ affords diplatinum-diosmium compounds $\left[\mathrm{H}_{2} \mathrm{Os}_{2} \mathrm{Pt}_{2}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{R}_{3} \mathrm{P}\right)_{2}\right] \quad\left[9 ; \mathrm{R}=\mathrm{Ph}, \mathrm{m} . \mathrm{p} .185-189{ }^{\circ} \mathrm{C}\right.$ (decomp.), i.r. (cyclohexane): $\nu_{\mathrm{co}} 2059 \mathrm{~s}, 2031 \mathrm{vs}, 2011 \mathrm{w}, 1981 \mathrm{~s}, 1963 \mathrm{w}$, and $1943 \mathrm{~m} \mathrm{~cm}^{-1}$; n.m.r.: ${ }^{31} \mathrm{P}$ (${ }^{1} \mathrm{H}$ decoupled, CDCl_{3}), -33.83 p.p.m. \{s, ${ }^{1} J(\mathrm{PPt}) 2741,{ }^{2} J(\mathrm{PPt}) 53 \cdot 7,{ }^{1} J(\mathrm{PtPt})$ $1744 \mathrm{~Hz}\} ;{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right.$, room temperature), $\tau 2 \cdot 68-2.78(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{Ph})$ and 17.72 (d of d, $2 \mathrm{H},{ }^{2} J(\mathrm{PH}) 20,{ }^{3} J(\mathrm{PH}) 2 \cdot 5$, $\left.{ }^{1} J(\mathrm{PtH}) 520 \mathrm{~Hz}\right\}$, at $130^{\circ} \mathrm{C}$ the hydride signal collapses to a triplet $\{J(\mathrm{PH}) \quad 11, J(\mathrm{PtH}) \quad 260 \mathrm{~Hz}\}] . \S \quad$ An X-ray crystallographic study of (9) was undertaken. \dagger

Figure 2. Molecular structure of $\left[\mathrm{Os}_{2} \mathrm{Pt}_{2}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{8}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$; metal-metal distances are given in the text, $\mathrm{Pt}-\mathrm{P}, 2 \cdot 319(2) \AA$.

[^1]§ Complex (9) has been observed previously (M. I. Bruce, G. Shaw, and F. G. A. Stone, J.C.S. Dalton, 1972, 1781) as one product of the reaction of $\left[\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})_{4}\right]$ with $\left[\mathrm{Pt}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$].

Crystal data: $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Os}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, M$ 1521.3, monoclinic, space group $C 2 / c, \quad a=15 \cdot 488(4), \quad b=12 \cdot 949(3), \quad c=$ $21 \cdot 364(5) \AA, \beta=93 \cdot 71(2)^{\circ}, U=4276(4) \AA^{3}, Z=4, D_{\mathrm{m}}=$ $2 \cdot 35, D_{\mathrm{c}}=2 \cdot 37 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2792, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=132 \cdot 7$ cm^{-1}. Current $R 0.037\left(R^{\prime} 0.042\right)$ for 4427 absorptioncorrected intensities [$200 \mathrm{~K}, 2 \theta \leqslant 60^{\circ}, I \geqslant 2 \sigma(I)$].

The X-ray study reveals a 'butterfly' arrangement for the four metal atoms (Figure 2). The molecule lies astride a crystallographic two-fold axis with the Pt atoms 3•206(1) A apart. We take this distance to indicate the absence of
direct $\mathrm{Pt}-\mathrm{Pt}$ bonding. The two osmium atoms ($\mathrm{Os}, \mathrm{Os}^{\prime}$) are asymmetrically bonded to the platinum atoms [$\mathrm{Os}-\mathrm{Pt}$, $2 \cdot 8626(7)$; $\left.\mathrm{Os}^{\prime}-\mathrm{Pt}, 2 \cdot 7086(7) \AA\right]$ and it is reasonable to suggest ($\mu-\mathrm{H}$) bonding along the $\mathrm{Os}-\mathrm{Pt}$ and $\mathrm{Os}^{\prime}-\mathrm{Pt}^{\prime}$ edges, an inference supported by electron density difference maps. The $\mathrm{Os}-\mathrm{Os}^{\prime}$ distance $[2 \cdot 7803(9) \AA]$ is $0.097 \AA$ shorter than in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]^{5}{ }^{5}$

We thank the S.R.C. for support.
(Received, 28th December 1977; Com. 1304.)
${ }^{1}$ J. L. Spencer, M. Green, and F. G. A. Stone, J.C.S. Chem. Comm., 1972, 1178; M. Green, J. L. Spencer, F. G. A. Stone, and A. J, Welch, J.C.S. Dalton, 1975, 179.
${ }^{2}$ G. K. Barker, M. Green, T. P. Onak, F. G. A. Stone, C. B. Ungermann, and A. J. Welch, J.C.S. Chem. Comm., $1977,169$.
${ }^{3} \mathrm{~K}$. Wade, Advan. Inorg. and Radiochem., 1975, 18, 1.
${ }^{4}$ B. F. G. Johnson, J. Lewis, and P. A. Kilty, J. Chem. Soc. (A), 1968, 2859; M. R. Churchill, F. J. Hollander, and J. P. Hutchinson, Inorg. Chem., 1977, 16, 2697.
${ }^{5}$ M. R. Churchill and B. G. DeBoer, Inorg. Chem., 1977, 16, 878.

[^0]: \dagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW. Any request should be accompanied by the full literature citation for this communication.

[^1]: \ddagger The down-field satellite and central peak were broadened at room temperature but sharpened at $-50{ }^{\circ} \mathrm{C}$. Moreover, at the lower temperature new low-intensity peaks appeared at $\mathbf{- 3 4 . 4}$ and 6.54 p.p.m. Thus the complex is stereochemically non-rigid.

